Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38541155

RESUMO

Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. It progresses from simple steatosis to non-alcoholic steatohepatitis (NASH). Fibrosis is often present during NAFLD progression; however, factors determining which subjects develop NASH or fibrosis are unclear. Insulin-like growth factor binding proteins (IGFBPs) are a family of secreted proteins involved in senescence and scarring, mainly synthetized in the liver. Here, we aimed to study the association of IGFBPs and their induced senescence with the progression of NAFLD and liver fibrosis. Materials and Methods: A total of 16-week-old male C57BL/6 mice weighing 23 ± 3 g were fed either methionine/choline-deficient (MCD) or control diet for 2, 8, or 12 weeks. Blood and liver samples were collected, and a histological assessment of NAFLD and fibrosis was performed. Fat contents were measured. Cellular senescence was evaluated in the liver. IGFBP levels were assessed in the liver and serum. Data were expressed as mean ± SD and analyzed by a one-way ANOVA followed by Tukey's test. Lineal regression models were applied for NAFLD and fibrosis progression. p < 0.05 was considered significant. Results: IGFBP-1 and -2 were increased in serum during NAFLD. IGFBP-7 was significantly increased in the serum in NASH compared with the controls. Senescence increased in NAFLD. Serum and liver IGFBP-7 as well as SA-ß-gal activity increased as fibrosis progressed. Both IGFBP-7 and cellular senescence were significantly higher during NAFLD and fibrosis in MCD-fed mice. Conclusions: IGFBP-1, -2, and -7, through their consequent senescence, have a role in the progression of NAFLD and its associated fibrosis, being a plausible determinant in the progression from steatosis to NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , 60515 , Camundongos Endogâmicos C57BL , Fígado , Cirrose Hepática/complicações , Colina/metabolismo , Colina/farmacologia , Senescência Celular , Modelos Animais de Doenças
2.
Cells ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334674

RESUMO

Different cellular mechanisms influence steatotic liver disease (SLD) progression. The influence of different levels of steatogenic inputs has not been studied in hepatocytes and hepatic stellate cells (HSCs). METHODS: HepG2 hepatocytes and LX-2 HSCs were cultured in mild (MS) and severe (SS) steatogenic conditions. TGF-ß stimulation was also tested for HSCs in control (T) and steatogenic conditions (MS-T and SS-T). Steatosis was stained with Oil Red, and the proliferation was assayed via WST-8 reduction, apoptosis via flow cytometry, and senescence via SA-ß-galactosidase activity. RESULTS: Regarding hepatocytes, steatosis progressively increased; proliferation was lower in MS and SS; and the viability of both conditions significantly decreased at 72 h. Apoptosis increased in MS at 72 h, while it decreased in SS. Senescence increased in MS and diminished in SS. Regarding HSCs, the SS and SS-T groups showed no proliferation, and the viability was reduced in MS at 72 h and in SS and SS-T. The LX-2 cells showed increased apoptosis in SS and SS-T at 24 h, and in MS and MS-T at 72 h. Senescence decreased in MS, SS, and SS-T. CONCLUSIONS: Lipid overload induces differential effects depending on the cell type, the steatogenic input level, and the exposure time. Hepatocytes are resilient to mild steatosis but susceptible to high lipotoxicity. HSCs are sensitive to lipid overload, undergoing apoptosis and lowering senescence and proliferation. Collectively, these data may help explain the development of steatosis and fibrosis in SLD.


Assuntos
Fígado Gorduroso , Células Estreladas do Fígado , Humanos , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado Gorduroso/metabolismo , Proliferação de Células , Hiperplasia/metabolismo , Apoptose , Lipídeos
3.
J Vis Exp ; (171)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34096925

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease worldwide due to its relationship with obesity, diabetes type 2, and dyslipidemia. Hepatic steatosis, the accumulation of lipid droplets in the liver parenchyma, is a key feature of the disease preceding the inflammation observed in steatohepatitis, fibrosis, and end-stage liver disease. Lipid accumulation in hepatocytes might interfere with proper metabolism of xenobiotics and endogenous molecules, as well as to induce cellular processes leading to the advance of the disease. Although the experimental study of steatosis can be performed in vivo, in vitro approaches to the study of steatosis are complementary tools with different advantages. Hepatocyte culture in lipid overload-conditioned medium is an excellent reproducible option for the study of hepatic steatosis allowing the identification of cellular processes related to lipid accumulation, such as oxidative and reticular stresses, autophagia, proliferation, cell death, etcetera, as well as other testing including drug effectiveness, and toxicological testing, among many other possible applications. Here, it was aimed to describe the methodology of hepatocyte cell culture in lipid overload-conditioned medium. HepG2 cells were cultured in RMPI 1640 medium conditioned with sodium palmitate and sodium oleate. Importantly, the ratio of these two lipids is crucial to favor lipid droplet accumulation, while maintaining cell proliferation and a moderate mortality rate, as occurs in the liver during the disease. The methodology, from the preparation of the lipid solution stocks, mixture, addition to the medium, and hepatocyte culture is shown. With this approach, it is possible to identify lipid droplets in the hepatocytes that are readily observable by Oil-red O staining, as well as curves of proliferation/mortality rates.


Assuntos
Técnicas de Cultura de Células , Hepatócitos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Meios de Cultivo Condicionados/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Fígado/metabolismo , Ácido Palmítico/metabolismo
4.
Molecules ; 24(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470620

RESUMO

Non-alcoholic fatty liver disease is a highly prevalent condition worldwide that increases the risk to develop liver fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, it is imperative to develop novel diagnostic tools that together with liver biopsy help to differentiate mild and advanced degrees of steatosis. Ex-vivo liver samples were collected from mice fed a methionine-choline deficient diet for two or eight weeks, and from a control group. The degree of hepatic steatosis was histologically evaluated, and fat content was assessed by Oil-Red O staining. On the other hand, fluorescence spectroscopy was used for the assessment of the steatosis progression. Fluorescence spectra were recorded at excitation wavelengths of 330, 365, 385, 405, and 415 nm by establishing surface contact of the fiber optic probe with the liver specimens. A multi-variate statistical approach based on principal component analysis followed by quadratic discriminant analysis was applied to spectral data to obtain classifiers able to distinguish mild and moderate stages of steatosis at the different excitation wavelengths. Receiver Operating Characteristic (ROC) curves were computed to compare classifier's performances for each one of the five excitation wavelengths and steatosis stages. Optimal sensitivity and specificity were calculated from the corresponding ROC curves using the Youden index. Intensity in the endogenous fluorescence spectra at the given wavelengths progressively increased according to the time of exposure to diet. The area under the curve of the spectra was able to discriminate control liver samples from those with steatosis and differentiate among the time of exposure to the diet for most of the used excitation wavelengths. High specificities and sensitivities were obtained for every case; however, fluorescence spectra obtained by exciting with 405 nm yielded the best results distinguishing between the mentioned classes with a total classification error of 1.5% and optimal sensitivities and specificities better than 98.6% and 99.3%, respectively.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Deficiência de Colina/diagnóstico por imagem , Fígado/diagnóstico por imagem , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Espectrometria de Fluorescência/métodos , Tecido Adiposo/química , Tecido Adiposo/patologia , Animais , Área Sob a Curva , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Análise Discriminante , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/química , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Análise de Componente Principal , Curva ROC , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Espectrometria de Fluorescência/normas
5.
J Biomed Opt ; 23(11): 1-8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30499266

RESUMO

Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis and cirrhosis. Liver biopsy, considered the gold standard to diagnose NAFLD, shows significantly high rates of interobserver variability. Thus there is a need to develop tools that accurately categorize mild and advanced grades of steatosis in order to identify patients at higher risk of developing chronic liver disease. Diffuse reflectance spectroscopy (DRS) has proved to be useful in grading liver fibrosis and cirrhosis, without having been implemented for steatosis. We aim to categorize early and advanced stages of liver steatosis in a methionine-choline deficient (MCD) mouse model. C57bl/6 mice are fed either methionine-choline control or MCD diet during 2 or 8 weeks to induce mild and advanced steatosis. Liver samples are obtained and steatosis is evaluated by oil red O staining. Diffuse reflectance spectra are directly measured on ex vivo liver specimens, in a wavelength range of 400 to 800 nm. DRS is able to discriminate between early or advanced steatosis and healthy hepatic tissue with negligible error while showing high average sensitivity and specificity (0.94 and 0.95, respectively). Our results suggest that liver steatosis can be accurately evaluated by DRS, highlighting the importance of applied spectroscopic methods in assessing NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Análise Espectral/métodos , Animais , Modelos Animais de Doenças , Desenho de Equipamento , Fígado/diagnóstico por imagem , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...